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SOME CONICAL AND QUASI-CONICAL I?IJWS

SUPERSONIC-WING THEORY

By Herbert S. Ribner

A nmber of conioal
flows have been derived.

n?13NEmEm

and quasi-Ocnical linearized supersonic
These flows may be applied in lift-

cancellation techniques in the determination of wing-lift dis-
turbances that arise at subsonic trailing edges. ScmE of the
results are applied to damping in roll and pitoh in another paper.

Two methcds of analysis have teen employed, both involving
integral equations. One is a development of the menbrane method
of Ev-vard;the other is an analog of the superpo~itionmethod of
SChlichting. In both cases, source distributions are used. The
mathematioal equivalence of the first method and a new doublet-
distribution method of Goodman and Mirels is shown.

The analysis of the flow over a sweptbaok wing (refe~nce 1)
makes use of Lagerstrom’s concept of lift oanoellation (reference2).
The starti~ point is a delta wing of infinite chord. Suitable flows
are superimposedthat oancel the lift outboard of and behind a ‘
certain boundary. This tmndary is-chosen to constitute the tips
and the trailing edge of the sweptback wing.

The cancellation flows for the wing tip mcdify the lift in the
tip region; they are not of concern herein. The cancellation flows
for the trailing edge modify the lift in a region ahead of the trail-
ing edge if the edge is “subsonic”(that is, if the oomponent stream
velocity nomal to the edge is subsonic). Now the lift distribution
of a delta wing at an angle of attaok is substantiallyflat in the
center. (See fig. 1.) Thus, an approximate cancellationbehind the
trailing edge would be afforded by a constant lift such as flow I in
the figure● (This idea was originated in referenoe 1.) Correspond-
ing approximate cancellation flows (III and IV) for rolling and
pitohing motions are also shown in the fi~e. The derivation of

.
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these three flows is the main
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object of this
laioratozy and
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report; the work was
ccmqiletedat the NACA

The analysis leads to inte@ equations, some with several
a-nt solutions. The choice of the physic&lly oorrect solution
in each case is determined by comparison with the solution for a
closely related flow that is mme easily calculated. Thus,
altogether, derivations are given for eight flow distributions.
Four of these flows are conical: the velocity components and pres-
sure are’constant along any ray fram the vertex. The remaining
four are quasi-conical:the velocity components and pressure are
proportional to the distance along any ray.

The practical application o! several of these cancelbtion
flows in the evaluation of damping in roll and pitch is made in
refez%nce 3.

.

cAN~ ONFLOWS

Each of the eight flows discussed can be considered to repre-
sent a slightly cambemd lifting surface lying essentially in the
z = O plane. (All symbols are defined in appndix A.) Thus, the
u and v velocities are anti’s-tric with respect to the z = O plane,
and the w velocity is symmetrio. With these reservations, the
boundary conditions can be specified for the upper surface only.
(This simplification is employed throughout the report.)

The flows contemplated for the partial oancelJation of the
lift behind the trailing edge are schematically designated in

. figure 2 for the several cases. A particular cancellation flow
(any one of I to IV, fig. 2) is superposed on the sweptback wing
so that the w = O regions lie ahead of t@e trailing edge and the
shaded region lies behind. The lift, and hence the u velocity, is
specified in the shaded region, and this specification determines
the lift cancellation. (See fig. 1.) The specificationw = O for
the prt -ofthe fluw overlappingthe ting ensures that the
resultant flow shall be tangent to the surface of the wing; the
basic delta-wing flow already ~ovides the correct value of upwash w
on the wing (for example~ -@J for angle of attaok) and the cancel-
lation flow nust therefore add none.

The u velocity of the cancellation fluw in the regions w = O
is algebraically additive to that of the basic delta flow there.
This additive u velocity corresponds to a Pssuze disturbance caused “
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by the wing trailing edge. The oentral problem of this report is
the determination of the u veloolty for eaoh of the oanoelhtion
flows I to IV from the boundary conditions stated in the preoed-
ing paragraph.

In the integral+ quation methcd”of solution as applied herein,
several solutions may be found for certain of the integral equ-
ations. Unique solutions can be obtained in eaoh case,”however,
for a flow that is closely related to the desired flow. The
correct solution for the desired flow may be identified by a com-
parison of the nature and the location of singularities in the two
flows. The identification is made more convincing by a quanti-
tative comparison of the u velooity over the region of interest in
additionto a consideration of the singularities.

Thus in figure 2 flows I to IV are the desired flows and flows
I’ to IVf are the respective related flows. The boundary conditions
for the desired and related flows differ only in the presenoe or
absenoe of a left-hand w = O region. Beoause of the relative remote-
ness of the left-hand region, conditions in this region may be
expected to affect but slightly the u velooity indu’oed.in the right-
handw= 0 region, so long as that region is relatively narrow. With
this limitation the u velocityin the right-hand w = O region cal-
culated for flow If, tkn, iS premd to be a $o~ appro~tionto
that for flow I, and s~ly for the ot~r I@XS of fl~s.

It wiXl be convenient to obtati first the solutions for the
rehted flows 1’ to IV’ so that they will.be available to aid in
identifying the correct solutions for flows I to IV, respectively.
Flows 1’ to IV’ require onlya shple inversion of an Abel-type
integral equation. Flows I to IV require a more elaborate procedure.

Flow I ‘
(For An@e of Attack)

In fluw I’ (fig. 3) the w velocity (or surface slope) is
prescribed inregion Aj but not the u velocity (or lift). The
u velooity is prescribed in region B, but not the w velocity. If
the w velooity were known in region B, this wing would be of pre-
scribed caniber. Acc@ing to I?uckett(referenoe4), the wing
could be represented by a distribution of sources in proportion to
the local value of w. The unknownu velocity in region A could
then be obtained by simple integration and differentiation. The
source representation can stilJ_be used, however, even though the
distribution of w in region B is unhewn. In this case the pre-

. . scribed cofiiton on u in region B till give rise to a soluble

-. .-—— ——. .—. ..— — .—— .— ..-. —-—— —.—— .. -.-— —~ —— . . ..-— — — .
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integral equation for the uulnmwn w distribution.-T@ia prooedure
is a development of Eward’s method (referenoe5). The details
fOllow.

The surface u velocity is given in reference 5, equation (3a).
In slight~ mcilifiedform, and in the present notation, it is

The oblique coordinates of reference 5 (Mach coordinates) are employed.
(See fig. 3.) Unsubscripted values refer to the field point, sub-
scribed values to the source point. The transformationsrelating
(xjy) and (~,q) are

.

The surface
the forward Maoh

.taken along any lines within S- or b~&g S across which the
w velocity experiences a jump Aw. The~-sand the line v=T~
(fi.g.3) might be suoh lines. Consider, however, the requirement

-of general similarity @th flow 1. The imposition of the Kiztta
condition at the trailing edge of the wing ,infigure 1 requires the
continuity of w across the boundmies q = T~ and ~ = W of the
shaded region of flow I, as sketched in figure 2. For flow I‘, w
must similarly be continuous along the right-hand edge of the shaded
region (q=T~). ldso, the cc&tinulty of w across the ~-ais
(Mach line) can be shuwn to be a consequence of the finite lift along
that line. The line integral in equation (1) accordingly vanishes
for flow I’. -

Let t~ point (~,TI) be looated at ? (fi$” 3); ~ rep~-
sents an arbitary point in region B. Then the forward Maoh cone
inoludes the shaded area in region B and an adjacent unshaded area
in region A. The quantity ‘b/hl = o in region A; therefore,

only the shaded area contributesto the surface integral.
Equation (1) my thus be written

!.

,,

. $

.
-. —.. .— –—-————
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The unhmwn inner integral, multiplied by l/TcM, may be designated
J(~@) which gives

Equation (4) is an Abel-type integral equation for the unlmmwn
function J(~,ql). Its solution is given (refezwnce 6) by

(4)

(5)

(The more general treatment of Abei’s integral equation in refer-
ence 7 implies that equation (5) will provide singular as well as
continuous solutions. The only important restriction is that
u(E,v) must be such that the integral on the right-hand side of
equation,(5) is continuous. In reference 6, however, certain
additional restrictions are @acedon u(~,q) to lmt equati~ (5)
to continuous solutions. In the present report, these additional .
restrictions are disregarded and shgular solutions may be expected,
as in equation (6).)

In the present case the function u(~,~) is a constant U.

(fig. 3). The solution for J is therefore

Mow let the general ~oint (~,7) be located in region A
at Q (fig. 3). The only change in the expression for u

(6)

. . ... .. .. -, . ..- ..._-. —_____ .+__., _+ ___ _______ ____
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(equation (3)) is in the nTper limit fa “~. This upwr limit is

now at the intersection of the line PQ with the line q = Tg ●

Aocordin@y,

U(gjq) = -

The value of J already
well as in equation (4).

Jo qJTI-w
region A (7)

obtained in equation (6) ap~ies here as
Upon making the substitution,

(8)

It will be convenient to”reexpress the result of equation (8)
in terms of the oonical coordinate o = $y/x● Along the line

n = T~, the’coordinate a is given the value n. The transformation

.

then yields

Equatim (10) gives the hitherto uulmown u velocity in
of figure 3. The w velocity in region B is still unknown.

(9)

(lo)

region A
This

.
— —.——— ..- —-- ———. ——
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w velooity wSU not be needed in the ~sent investigation,but
the method of solution is given in appendix B as a matter of
interest. ,

Flown’
(special)

The development leading to equation
flow I’ leaves the boundary condition on

(5j in the treatment of
u as yet unmecified.

The development -the eq&tion are thus suffic~etily ~eneral to
be applied to any of the flows I’ toIV’.

The present case is complicatedly discontinuity in the
u velooity across the x-axis (fig. 4). The point P = (~,~) may
lie in either of the regions B1 or ~. The

solutions for J(t,vl) from equation (5) wi~

them Jl(g,ql) ad J2(~,TJ.), reswctively.

U(g,v) are

Corresponding

be different; call

The conditiom on

Then
rm

——-—-.—. .- —-..— — . ..— .—__— ..—. — —_._——_ ._
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The results are .

(I-1)

Equation (7) is, llke equation (5), applicable to any of the
flows I’ to IV’. For flow IIf t~ appro~iate -cti~ J(~~vl)

iS J1(~>v1) in the range O<Vc~ and J2(~,ql) in the -

~~e ~< q< T~. Therefore

‘o

[
=—-

l’t

o e?’2JEw=-j~:
. L d

o = py/x “this equation is,
(9) are applied,

In terms of”the conical.coordinate
after the transfo~tim equations

“u(.,+~-co<l~.-siti.jm] 02)

1

.
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Equation (I-2)gives the u velocity in the w = O sector
(n ~ 0 ~ 1) of flow II’ (fig. 1), which is zone A of figure 4.

FI.UWIII’

The appropriate value of u tohe substituted in equation (5)
is, from fi&re 2,

u= Ky

or

Eo that

Insertion of this value into equation (7) gives

J

t

(271-Od~
U(tjq) =*

o W’ (’:@) ~

which integrates to
,’

r 1

(13)

(14)

-..-.—. -..- _._— .__ ..._. ______ —--————— . .—. . .—-. . .— .. -.. _. __. .
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In terms of the conioal coordinate
after the transformation equations

I
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0 = ,$y/x this equation is,
(9) are applied,

Equation (15) gives the u velocity in
(n~~ <l) of flow III’ of fip 2.

Refer to figure
in equation (5):

Flow Iv’

2(l+n)(1-0)(O-n
l-n ‘1(15)

the w= O seotor

2 for the value of u to be substituted

U.KX

Thus

Substitution of this vslue in equation (7) gives

(16)

*

___ ._. ———— —.— .. _—— —.— —––—
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In terms of the conical coordinate 0. 9Y/X this equation is,
after the transfommtion equations (9) are applied,

U(o,x) = ~ 12“in-’wE3-M2(’+n):?(o-n)“-7)
L

This equation gives the.u velocity in
(n~a~l) of flow IV’ of figurel.

Flow I

the w . 0 seotor

(For Angle of Attack)

Flows I to IV differ fram flows If to IV’, respectively, in
the specification of a left-hand sector w = O to match the right-
hand sector (fig. 2). The solution oan no longer be obtained by
the simple inversion of an Abel-type integral equation. Resort is
therefore made to a different integral-equationformulation in
which advantage is taken of the conical nature of the flow. The
method is an analog of the superpositionmethod of Schlichting
(reference 8).

According to the considerationsdeveloped in the discussion of
flow If, flow I may be represented by a suitable souroe distribution.
At every point the required source strength is proportional to the
local value of w. Thus the source strength is zero in the two
outside sectors. (See fig. 2.) In the centrel sector w is
unknown, but there is a condition on the u velooity. The source
distribution there must be so chosen that this condition on the
induces u velocity is met. The fornmlation of this condition gives
rise to an integral equation for the unknown souroe distribution.
A convenient form of integral equation is obtained as follows: The
source distribution over the region u = uo is considered to be

obtainea by superposing unifomn sectors of infinitesimal strength
and &ifferent lateti extent+ol. Section A-A of figure 5 illus-

trates such a distribution. The strengbh of an elementary sector is

given by

.

.
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Each elementary source-sheet sector induces a certain infinitesi- ,,

ml u velocity.andthe total u velocity is given by the integral.
Tais Integral nmst be equated to the prescribed u velocity shown
in figure 5. The result is the desired integral equation for the ;
unknown distribution strength bw/a~. l-l

The infinitesimalu velocity induced by an elementary souroe-
sheet sector etiending from -01 to o~ can be obtained from “ ,

reference 4 (equation (31)). In the present notation it is “
●

q
Au(0) = -j+—

(,,

-1

)

1-5” -1 lwio

r

cosh — + cosh —

II
(18)

1-%2 o -% (7 +(s1

where an absolute vshe sign has been added to the denominators of

the cosh‘1 terms. With the absolute value sign, eq~ation (18)
applies both for la! sol and for lo! ~Gl; whereas in reference 4

the two cases are separately covered in equations (31) and (33))
respectively. (The same expression results from the addition of two
oppositely swept line source’sof the acceleration potential. See
reference 9, equation (12).)

.

The total u velocity induced by the superposed source-sheet
sectors is

(19)

If u(a) is put equal to the specifies value U. in the range .
ICJ]< n, then equation (J-9)represents an integral equation for
the ~erivative &( O1)/&I of the U@OWU S~Ce stre@h” ‘MS

equation as it stands is too complex to be useful. Great simplif-

ication results, however, upon differentiating both siiieswith

(20)

.

.
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(The Cauohy prinoipl value is to be taken for the integral.) In
the range 101< n, &/& = O. The following less formidable
integral equation is thus obtained:

[

n

o

(21)

The substitution tl = 012, t = c12 reduoes equation (21) to a

speoial case of

J
b

f(t~)dt~
— = g(t)
tl-t”

(21a)

a \

The integral equation (21a) is well known from incompressiblethin-
airfoil-sectiontheory but the usual inversions yield only the

~trivisl solution f(tl = O for g(t) = O. A nontrivial solution

of equation (21) for &/bl has been _sted by C..E. ~~ of.

the NACA Langley laboratory. Put

02=$(1-.0s5)
n2

cJf’ =~(1-cose)

}

&?q = Cf(e) (c = unknown oonstant)J

Then equation (21) becomes

J
Y-c

o

f(e) sti e de
cos e - Cos 8

(22)

(23)

—. --.—--—. --.. —.—. ..- .. ___ -—-— ._ ———. —.. —.. . . .
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Now acoording to reference 10

J
l-c

o

de
oCos e -COS8=

whence a solution of equation (23) is

f(e) = OBC

or

NACA TN 2147 .

ij

(24),

g J=Cosco

The question of uniqueness is deferred until later; in the meantime
equation (24) is considered as the physically correct solution.

Equation (24) carries the solution for &/&Jl far enough to

enable the determination of u. Thus, equation (20) is still valid
in the range n < 1~1 <1. In this range h/aO ~ C, and
equation (20) may serve for the evaluation of u. The transfomatlon
from U1 to @ (equations (22)) is again convenient. (The tra# -
formation from 0 to 5 is not used as it leads to 00s 5 > 1.)
The result is

JO

‘and with f(e) s csc e

-.. .— —._ —..
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This integral is evaluated in reference Xl (table 64, equation (12)).
The result is

For purposes of integration, o may be restricted to the positive
range so that 0/10 I = 1; the resultant integral will be applied
for both the positive and the negative value of 0 beoause of the
symmtry of the flow in 0. The elliptic-function substitutions of
a~ndix C are helpful in this and other more difficult integrations
of the same nature in this report. The integral of equation (26)

,,

between the limits o and 1 -is found to be-

where F is the
with mdulus

and amplitude

The constant C
00 that fi~y

incomplete elliptic integral

. .

of the first kind .

is este%lished by the condition that u(n) = U.

(27)

Equation (27) is a solution for the u velocity in the out-
board sectors n ~ 0 ~ 1 of flow I in”figures 2 and 5. Equation (27)
is not a unique solution of the integal equation (21), and it remains
to be shown that it is the physically correct solution for flow I.
The singularities in &/%, equation (26), maybe compared with
those in the corresponding result for flow 1’, obtained %y differenti-
ating equation (10). In both oases half-order singularities are

———.-.- ___ .=. _ _________ ___ _ —— ..-. —______
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foundat CJ=n+ andg. 1 (that is, !&@J[ approaches infinity “

as (G-n)‘1/2 when 0 approaches n from above’(designatedby
ns) and there is a similar behavior as a approaches 1). The
quantitative comparison of equation (27) with the corresponding g
solution, equation (10), for the right-hand seotor of flow I f
(figs. 2 and 3) is even more convincing. The two soluti~ are
plotted together in figure 6 for n = 0.707. The agreement is so
close that the two sets of points seem to define a single curve, the
uppermost curve of figure 6. (Other calculations for the point
defined by ~ = 60°, plotted in fig. 7, confirm the expectation
that this close agreement becomes progressively impaired as n is
chosen smaller and smaller. The error is within 5 percent down to
n= 0.32.)

Equation (27) is the correct
wake correction” of.reference 1.
in an erratum sheet thereto.

Flow

solution for the ‘s-trical
This result has been incorporated

lx.
(Specisl) - -~

Flow II has more academic than practical significance. It
could be used in the determination of the loading on special ailerons
to cancel (approx~tely) the loading in the wake of a sweptback wing ,
with the ailerons deflected. These ailerons would be full span, or
located inboard if part spn, with a vertical fence at their juncture
to isolate the two ahead of the region of trailing-edge disturbance.

Comprison of the s~cifications of flow II and flow I in
figure 2 shows t=t ~ is antisymetric whereas I is symmetric. It ‘
is therefore necessary to use antisymmetric source-sheet sectors in
the superposition process, rather t~ the s-tric sect~ used
for flow 1. The change is effected by simply changing the sign of

the second cosh‘1 term in equations (18) and (19). The equation
correspondingto equation (20) then becomes

4

(28)
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(The Cauchy principal ~ of the integal is to be taken.) The
integral equation that results on setting &/aO = O is thus

G
~

(29)

in plaoe
equation

funotion

equation

,

in terms

of equation (21). Equation (29) is of the same form as
(21): b~~ is replaced by ~lhfi~ as the unknown

of O1. According to equation (24), a solution of

(29) therefore is

aw
q ~1 =Ccmce

of the function e defined in”equations (22).

the determination ofFor

sulmtituted back into equation

as in equation (22), There is

(30)

u, the solution equation (30) is

(28) With 012 = ~ (1 - COS @

obtained

flfi

Jo

2& -1+00s0
~

This expression for &/ao differs from equation (25) only in
the laok of a factor O outside the integral sign. Comparison
with equation (26)%herefore shows that the result of the inte-
gration must be .

— .-— —..—— .-_—. .—— —.
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This ‘functionis readily integrated with the aid of the ell.iptic-
fhnction substitutions of appendix C. (The absolute value sign 1s
temporarily ignored.) The integral from CT to 1 oan be expressed
in the form $

Cn 0u(a) = — — ~os-l (l+n2)& -2n2
4$ Iol

n:[al~l
(1-n2)&

where the sign factor o/10I has been appended.in order to provide
the antif3Jmunetry of u in +0 indicated by equation (31). The
consta’nt C is established by the condition u(n) = Uo, so that
fina12y .

%) 0 ~os-l Jl+n2)02-2n2u(o) = — — n~lal~l (32)
fi Ial (1-n2)&

v

Equation (32) is the solution for the u velocity in the w = O
sectors of flow II (fig. 2). AS before, the solutfon is codma
by comparison with the solution (equation (12)) for the related
flow II’ of figure 2, with attention to the singularities in &/~0.
The two solutions are plotted together In figure 6 for n = 0.707.
Again, the a+geement is such that the two sets of points seem to
define a single curve, the second from the top in the figure.

Flow IIX

The boundary conditions (fig. 2) shuw that flow 111 cannot
be conical like flows I and II, but must be quasi-conical. That
is, the velocity components are not of the form u = F(y/x) and
w = G(y/x) but are rather of the form u = xF(y/x) and
w = x@y/xj c The flow iS, huwever, antfsyxmmetriclike flow II. -
A flow of this type can be built up (compa~ treatment of flows I
d II) by superposing elementary souroe-sheet sectors that have a
strength variation proportional to y or, what a&unts to the
same thing, to xc.

An exam@e of how an arbitrary antisynm&ric quasi-conioal
w velocity distribution of the form

(33)

_.-— .—.
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can be built up by such sheets is shown in figure 8.
fig. 5, section A-A.) ‘The strength of an elementary
characterizedby the strength parameter

19

The incrementalu velocity induced by an elementary sheet for
which

w = (constant) Pyl

= (Af) XUl

can be derived by standard methds (for exam@e, reference 5).
The e~ssion is

Au = ~ U(%@

where

(34)

The total value of u contributed by the superposition of all the
contemplated sheets Is given by

Now u(x,a) is specified over the shaded area (101 < n) of
flowIII in figure 2. Thus, equation (35) represents an i~tegral

.-— —...-— .— .-—._.
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equation for the unlmown function

U“(a,ol) of this integral equation

NAOA TN 2147

df(~l)/W1 . The kernel

is quite complex. The second

derivative of U(O,O1) with respct to 0 has, huwever, the

mzch simpler form

#U(o,o~) ~ 4 oaf’

3$ ‘- Yt(cJ&0q2+Ja
e

This sim@e function would then he the kernel of the integral
equation-obtained by differentiating equation (35), provided that
the right-hand side of equation (35) could be differentiatedunder
the integral sign without regard for the singdarity b: 01 = a.
It is clear that such a procedure-would be invalid in this case
because for 10I c n the kernel would have a second-order pole
within the range of integration.

H. Mirels of the Lewis laboratory has, however, pointed out
that if the differentiationwere conducted properly the result
might be written in the form

pn

rn
The sydml ~

Jo
at 01= o is to

evaluated at 01

Jo “L

signifies tlxitthe

be subtracted from

indefinite integral evaluated

t-heindefinite integral

= n. Defined in this way, the integration can

be carried out without‘difficulty,inasnmch as % integrand is
regular in the neighborhood of the limits.

The formation of equation (36) is a special case of a
theorem that may be briefly stated as folhws: If the function
f(x,~) has an “integrablesin.gularity”within the interval of
integration,then, under rather gene= circ-ances~ the equati~

●

.

— .— —-— —-. ...— — —.. .
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is correct. A general discussion and proof of this theorem is
provided in aypendix D by F. K. Moore of the I.-etislabomtq. .

‘Theprescribed condition on u in the range laI~ n is
(flow III, fig. 1): ~

or

Application of this condition to equations (35) and (36) yields
the two alternate integral equations for df(ol)/dO1

Jo ,

I
n

o
af=

J
q

o

(37)

(38)

Attention will be centered on solving the sti@er of the two
equations, (3q)0

—. —.. . . ..— ——— —— ———— -——-
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where

It is convenient to write equation (38) in the form

(39)

(40)

is regarded as the unknown funotion. Then equation (39) will be
so“lv~ if any choice of

integral I to vanish.

The transfomnation

ml) oan be found that will oause the

g q) = Cn2h(0)
1

(41)

converts equation (39) to

[

fl/2 ‘

I = c(l-q2)2
h(e) sin 9 00S e do

T (sin2 e + q2 cos2 0)2
(42)

Jo

Certain similaritiesto integrals 14 and 15 of reference il.,table 48,
-St

h(e) = tan O (43a)

h(e) = cot e (43b)

.

..

ij

\ . ..—4



MICA TN 2147 23

as possible solutions of equation (38) or (39). Both funotions
are found upon substitution and integration to satisfy the
equation. Any linear combination of solutions (43) is also
clearly a solution. Thus, the integral equation (38) does not
have a unique solution.

The later identification of equation (43a) as the physically
oorrect solution Is anticipated at
in the w = O regions of flow 111
Equation (36) can be written

. .9

this point. Then the u velocity
may be evaluated as follows.

where I is the integral defined in equation (39) or equation (42).
With the solution equation (43a) substituted in equation (42). the
integral I has the value (reference

I = c(l-q2)2”.&

- But according to equations (41)

integ&l-i4)

(45)

‘=757
whence

and, upon returning“toequation (44),

(46)

.— . .. . . -.. . ..—.—. —. -.—.—— . . ..— -———...--. ——. .-— -—.————
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‘,

The u mlooity in the region n ~ o :1 results upon inte-
grat~ equation (46) twicd between the l~ts 0 and. 1. This
integrationmay be effeoted with the aid of the elliptic-integral
substitutions of appendix C, and the result is

C#x

([ J l-n2
U(u,x) = u E(cp,k)-n2F(q,k) - ~

)

sin 2CQ
j3(l-n2)-

where

The value of C is established by the condition that
u(n,x) = Ky = l%x/P. The negative range of o (-1:0 :-n) is
tahn care of by introduction of the antispuetry factor 0/10 I.
These operations yield the final result

.

(47)

velocity in the w = O
r&mlts frcm the choioe
integral equation (39).
by C~iSOIl Of

Equation (47) is the solution for the u
sectors of flow III (fig. 2). This equation
of equation (43a) among the solutions of the
The correctness of this choice is detemined
equktion (47) with the solution equation (15) ‘ofth~ related flow III
of figme 2. Both equations exhibit a helf-order singularity in
&/b at 0 = n+ together with &/~0 = O a% o = 1.
(Equation(4~), on the other hand, leads to a different behavior.)
Equations (47) and (15) are plotted together in figure 6 for
n= 0.707. Again, as for flows I and I’ and_II and n’ tk agre~nt
is such that the two sets .ofpoints lie on a single curve, th
bottcm curve in the figure. The degree of agreement as a function “
of the parsmeter n for the ray defined by ~ = 60° is shown in fig-
ure 7. The error is within 5 peroent down to n = 0.4.
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Flow m

The %oundary COIlditIiOnS(fi$. 1) show that this fbw iS ~UaSi-
conioal like flqr III. That is, the velocity components are of the
fom u = m(y/x) and. w = -x@y/x) . The flow is, however, symnetric
lik flow 1. A flow of this type can be built up (compare,treat-
ment of flows I and III) by superposing elementary source-sheet
sectors that have a strength variation proportional to x. These
sheets are amanged in the same manner as the correspondingconstant-
strength sheets employed for flow 1. (See section A-A, fig. 5.)

Let the source strength of an elementary sheet sector be
spectiied by

\
where Af is a
extends from a

induced by such
reference 5 and

W = (Af) X

constant for a particular sheet and the sector
= -01 to o =01. The incrementalu velocity

a sheet bm been calculated
the IY33ultis

by the method of

(48) s

\

where

ml ( l-qu
.1 l-wW(X,00J = — 21/z7- — cosh — -

x (1+)
r

CJ1-o
l-q2

J cone

.

——..—. -—. — ——. ... . .. ...- .—-. — .—. —.— -—=— .— . . . .. .. ....— —._—
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(The inte@’al was not evaluated inasmch as only the x-derivatives
of W will be needed in the applications herein.)

The individual sheet-strengthparameter Af oan be e~ssed
as

so that

The total value of u contributedby the superposition
contem@ated sheets is then

.

.

.

Of all the

(49)

The development leyond this point runs s~ly to that for
flow ~. Inammzch as U(X,0) is specified over the shaded area
(lol~ n) of flaw IV of figure 2, equation-(49) is an integral
equation for the unlmown function df(O1)/d~l. The kernel

W(%WJ W disagreeably mnplex, but its semnd derivative

with resyect to X,

is relatively simple. The theorem, equation (M), for differenti-
ation under the inte~ sign is therefore employed to give

(50)

—— .— _—_— —–—— --- —



NACA TN 2147 27

r“
.

The integration symld 1

J

has the speoial significance“pretiousl~

o
discussed under flow III.

The presorihed comiition on u in the range Iol ~ n is
(flow Iv, fig. 2)

or

Application of this condition to equation (50) yields the integral
equation for df(~l)/dOl

r‘M.&p7d(7
.11

(Sl)

This equation may be compared tith the correspon&ingequation
for flow III (equation (38)). Both equations are of the form of
equa$ion (39), but with different e~ssions for the unknown
8(61)●

Thus the method of solution for equation (39) will.apply

for equation (51), with

(52)

Onoe again the pwper solution for g(ol) = Cn2h(0) is

found (by later comparison of fluws IV and TV’) to be given by
equation (43a). This solution is now employed in equation (50)

in the range n <101 ~ 1 for which %@x2 does not vanish.
The integral has the value given in equation (45), and equation
(50) becomes

-.-.—- .— . —— -- -.—----- ———-— ---—-–—--- -
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.

()&u=
~403

ax2 y
3/2

43px(02-n2) 1

Now u is known to le of the fom

u = Byf(CJ)

so that

()

au
7EY=

- &f’(a) =

()

&

537
= .; g’(o)

n< 1~1<1

(quasi-codcml

(53)

flow)

(54)

Thus ly comparison of equation (53) with the last of equations (54)

-Cn4&’
g’(a) = 3/2

rB(#-nz ) 1-%

The elliptic-functionsuhstitutiona of appendix C are convenient
for performing the integration for g(a), with the limits 0
@ 1. Then f’(o) . -g(0)~2 may in turn be integrated to
yield u. The result is

CAU(o,x) = —
[ 1F(Q,k)-E(qjk)

13(1-n2)

where

..-— . ——

rk = l-n2

.

.

.
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The oonstant C is established by the condition that

U(n,x) = Kx

so that finally

U(o,x) = Kx
F(c?Ik) - E(Q,k)

F@) -E(:,k)

(55)

Equation (55) is the solution for the u velooity in the
w= O sectors of fluw IV of figure 2. This equation results
frcm the choice of equation (43a) among the solutions of the
integml equation (39). The correctness of this choice is deter-
mined by comparison of equation (55) with the solution equation (17)
of the related flow IV’ of figure 2. Both equations exhibit a
~.order sin@arity in k/& at 0 . n+ toget~r with
%/~=0 at 0=1. (Equation (43b), on the other hand, leadq
to a different behavior.) Equatf~ -(55) and (17) are plotted
together in figure 6 for n = 0.707. Once again, as for the pairs
of flows I and I’, II and.11’, and III and III’, the ~ement is
sufficiently close so that the two sets of points seem to define a
single curve, which is the curve next to the %ottom in the figure.
The degree of agreement as a function of the yarameter n, for the
point defined by CP= 60°, is shown in figure 7. The error is
within 5 @rCent down to n = 0.27.

DISCUSSION

In the foregoing derivations principal attention has been
devoted to the solution for the u velooity (or the pressure dis-
turbance) in the regions in which it is unknown. The solution for
the w velocity (or the upwash) in the regions in whiah it is
unhewn has also been obtained, although for brevity it has been
amitted herein (except in the single example, appendix B). Com-
parisons of the singuhmities in the w velocity between flows I
and I’, III and III’, and IV and IV’, respectively, were made in
addition to the u velocity comparisons mentionea earlier. These
additional comparisons again shuwed very close agreement between
each flow and its related flow, in support of the correctness of
the ohoice in eaoh case among the solutions of the integral
equations for flows I, 13X, and IV.

.

-..—. -—— .-.. —... —.— -— -- —..— —.+ ~. .. . . ..— —. .—— —— — - ———
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A primary aim of this reTort has been to provide the EUISJ@ical “
basis for approximating in stiple fashion the effect of subsonic
trailing edges on damping in pitch and roll.for thin sweptback wings
in a supersonic stream.

2
(See reference 3 for detailedapplication.) d

Accomiingly, the main emphasis has been placed on the “desired flows”
Ito Iv.- The more eas~y solved “relate& flows” I‘ to IV1 were found.,
however, to approximate flows I to IV in the regions of interest
much better than had been anticipate. (See figs. 6 and 7.) ‘It is
clear from the comparison that a mcderate modification-of the boundary
condition near the left-hand Mach line (fig. 2) - the aisti~ishing
feature %etween the unprimea and primed flows - will scarcely affect
the flow in the region near the right-hand Mach line. Thus such a
modificatim may freely be made to simplify a given problem, and the
solution of the mdifieii flow will apply to the aesirea flm with
engineeringaccuracy. In @icular, the relatea flows herein may
be used in @ace of the &esirea flows if trigonometric functions are
prefemed to elliptic integrals. .

A general meth~ for the calculation of flows (fig. 9) of
which flows I‘ and IVf are special cases is included in a pa~r by
Goodman (reference12) after the bulk of the present work was
completed. The methd and its ay@icathns have been simplifieii
and extendea by Mirels (reference13). The genezal solution for
the unknown u velocity in the flows spscifiea in figure 9 is given
in elegant form in reference 13. This result, originally obtainea
by means of a doullet aistrilution, may be ileriveahy means of a
clevelopnt of the present source-distributionmethod. The unlnmwn
w velocity may be obtainea as well. The details are given in
appendix E as a matter of interest. “

CONCLUDING REMARKS

The ~low over a sweptback wing may be obtainea by su~rposing
on a basic delta-~ flow additional flows to cancel the lift
outside the Wxm&xries defining the sweptback wing. The cancel-
lation flow for the trailing edge modifies the lift in a region
ahead of the trafling edge if the component of the stream velocity
normal to the edge is subsonic. For angle of attack the principal ‘
part of this cancellation fl~ is conical; for rolling and for
pitching the principal part is quasi-conical. The clerivationof

.
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three and several related conioal and quasi-conical flows has
%een tied out in this report. For each ease the problem was
formulated as an integral equation. Some of the results are
applied to damping in roll and in pitch in another report.

Lewis Flight mopulsion Laboratory,
National Advisw Ccmmittee for Aeronautics,

Cleveland, Ohio, February 3, 1950.

,

.

—.-— --- —— .—-———-. --— .— .—. ——— —–—- —
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APPENmx A

SYMBOLS

The

c

c1
E(~,k)

F(g,k)

f(e)

f(o)

f(01)

g(o)

$01)

h(e)

I

J

k=

M

n

q =

s

ftiowing aym%ols are used in this report:

Mxmdary for line integral, as specified in text; also
undeteminmi constant

pressure coefficient (pr~ortional to u)

incomplete elliptic integral of seoond kind with amplitude
Qandmcdulus k

incmplete elliptic integral of first kintiwith amplitude
Q and lll&hihlSk

function deftied.in equation (22)

fanction defined in equation (54)

function aefha in equation (33)

function defined in equation (54) ‘

function defined in equation (40) fcm flow IIZ, in ~
equation (52) for flow IV

function aefha in equation (41)

integral defined in equation (39)

integral defined in equation (Bl)

Mach mmberj ratio of stream velocity to velocity of
sound in free streem

value of c along side edges of shaded triangular regions
in figure 2

oj~c?-n2

area”for surface integral, as specified in text

.

.— —.
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U(%O1)

u, V,w

U.

Au

v

W(x,a,al)

x,y,z

a

P

5

e

K

E,?-l

0=

T =

‘?=

1,11
III,IV

I’,11’,
lXI’,IV’

.

funotion defined following equation (34)

disturbance velocity oompcnents along x-, y-, and
z-axes, respectively

constant value of u over presorihed area

inorement in u

free-streem velocity

function defined following equation (48)

Chsian coordinates: x-s parallel to free-stream
direction; y-axis horizontal and toward right, looking
uystream; z-axis vertically upward

angle of attack

T M2-1

def&d in equation.(22)

defined in equation (22) for flows I and II, in
equation (41) for flows KD and IV

constant of proportionality (fig. 2)

oblique coordinates measured pamllel to downstream Mach
lines, defined ly equatione (2)

$y/x

1% (See fig. 3 for geametric significance.)

r

sin-l l-&
l-n2

desbd flows designated in figure 2

related flows designated in figure 2
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r

b

T
special integration sign defined folJmwing equation (36)

Ja

A prima
function with

function signifies the first derivative of the .
respect to the independent miable.

.
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.
APPENDIX B

EVALUATION OF tWWASH IN REGION B OF FLOW I ‘

Note that just before equation (4) there is the definition

(Bl)

Now J is a known function, whioh was evaluated in the course of
obtain3ng equation (10). Thus equation (Bl) is an Abel integral
equation for the unknown funotion &/~. Its solution (refer-
eme 6) is :

p 1

(B2)

.

With the value of J fm flow I‘ (equation (6)) this is, provided
that the integral on the right-hand side is continuous (reference 7),

JII1/T

Upon dropping the subscripts and converting to
by means of equations (2),

Cartesian coordinates

(B3)

.

._. _—..—. — .—. .- —--— —--- -..————— ----- — -.
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The indefinite inte~ is

w=- ~c -’2m~o 2(l+n) cosh

.

lUIOATN 2147

=- . (B4)

Equation (B4) gives
the line q = Tg (0

of integration is therefo~ zero and equation (B4) is the required
so~tion fa the upwash velooity w.

w= O along the &axis (0 = -1) and along
= n), as it should for flow I‘. The oonstant

.—



.
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APE!ENDn c

TO INTMRMTON

The more elabozate integrations in this report, leading in
most caaee to elliptio integrals, are moat easily evaluated with
the aid of the following elliptic-function substitutions,together
wtth the tables of integrals In references 14 and 15:

4/21- =ksnu

r
&*2 =konu

O=anu

do = -k2snuonudu

where
o

u = F(p,k) [not to be confused with the
u velooit~

vCp= sin-l ~
l-n2

k=- “

rkf = l-k2 =n

. ..—. ..-——- -.——-—- -.. ——-. —--- -—-.–--—- ——-—-—_ .——. . -. _
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APPEKDLT D

OF INTEGRKU3 OF SINGULAR FUI?CTIOIIS

By X&add—h K. Moore

The problem srising in the differentiation of equation (35)
my be stated in the following general terms: It is reqairea to
differentiate,with respect to a ~ter of t~ inte-} t~
defintte integral of a function that, though integrable, haa a

, singularity inside the range of integration suoh that the definite
integral of the derivative is not convergent. It is shown herein
that, sub$eot to oertain restrictions, this differentiation oan be
omried out,in a simple *r, avoiding considerateion of the
singularity●

The integral to he Mffemntiated can be written

0

It will be supposed
a<~<band isa

f’b

I(x) = Ja
that f(x,g)
fumtion such

has a singularity at mm point
that

(I) h indefinite integral- F(x,~) = I f(x,~)d~ ~Y be

J’
fOuna●

(2) The function 1(x) is a convergent improper integral thd
oan be written I(x) = F(x,b)-F(xja). ‘(seereference 16Y P-
~ph 169.) Under these restrictions, f(x) may have an ‘integrable
sing$krity” within the interval of integration. For exam@e,
f(x,f) = l~lx-g, a<x <b, meets the foregoing requirements

(l) aria(2). ‘

It is required to carry out the fdllowing dfiferentiation: I

f

b“

I’(x) = & f(x,~)a~ A ~ F(x~b) - & F(x,a) (Dl) .

.

.

——.—- .—— ——— —
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\

39

By definition,

It is su~osed that

‘~ ]=$[&F(x,t)]=(3) At the points ~ = a,b, ~ ~ F(x,~)

In ozder that this relation be valid, the following restriotiona
on F(x,~) in the neighborhoods of ~ = a,b are requ~d (ref-
erence 16, paragraph 213):

It then follows that

[1~f(%g) = $ &F(x,~)

Thus, provided that

(4) $ f(x,g) has an indefinite integral,

Pt

: F(x, t) = I & f(x,!)d + g(x)

where g(x) is an

Equation (Dl)

I’(x) =

d

arbitrary function.

can then be written
?

,

.

1

——-— .—. — --———— .-
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or

W&n the convention introduced in equation (36) is followed,
equation (D2) can be written

(D2)

(D3)

The result (D3) my be stated as folhws: Subject to the
. restrictions (1) to (4) on the behavior of the integmnd near

the limits, the differentiationwith respect to a @rameter to
the integrand of a convergent hproper integral may le accanplished
by fotiy integrating the derivative of the integrand, as though
its singukrity were not Tresent.

It is olear that

f%

In(x) = 1
~2
— f(x,g)df

J s (D4)

a

provided.that requirement (3) is replaced by the zywtriotion that,
near ~=a,b ‘

. H?F(xyll=$[$F(xyg
.

Equation (D4) is the relation used in this report.

The foregoing proof may
a and b are funotions of
requirement that

easily be extended
x, subject only to

to the case where
the additional

——-. ———.-



(5) a’(x) and h‘(x) are continuous, yielding the redt

r

b

I’(x) = b’(x)f(x,b)-a’(x)f(x,a)+

J
: f(%g)dg (D5)

a

.

.

..—-— ..- _— -.. .—-— —— .. .. .————. . . .. . . .
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GooEMA19+nRELs

APPENDIX E

~ CANCELLATION FLuw

.

The generalized cancellation flow intraiuced in referenoe I-2
and etiended in tiference 13 is specified ly the boundary condi-
tions of figures 9(a) or 9(b), depending on the position of the
line v = f(&!). Consider first ftgure 9(a). The flow can be.
represented.,as befo=, by sources distributed along the surface
in-proporti&lto w. In the Mach coordinates of
surface potential is

H

v’ t

d~l ~ ~1
P(f,n) = -* —

F
Vll F -1

f( g G(@

wkm (t ,TI) is located at P in region B. In

referenoe 5, the

region ‘B (El)

.

what follows ‘?
wSU &y- essenti~y the role that u Played in the solution
of fluws 1’ to IV’.

Consider next the case of figure 9(b). By virbue of the lef%- ~
hanau= O region (reference5), the region of integration for
P(t~V) fl’ n~ ficlude t~ area lefi ~~ded in t~ uPWr corner.
It is found that with the present notation the ltmits of integration .
are unchanged fran the case of figure 9(a). Thus equatioh (El) I
applies equally well for the case of figure 9(a) or 9(b).

Solution for u in region A. - Define

so tlhat

(E2)

(E3)
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Equation (E3) is
is (references6

43

an Abel integral equation for J. Its solution
and 7)

rql

Now let the general point (E,~) be located in region A
at Q. The only change in the expression for q is in the upper
limit for VI. This upper limit is now at the intersection of

the line FQ with the line v = g(~). Accordin@y,

The value of J already obtained in equation (E4) applies here
as well as earlier. Upon making the substitution,

f(g)

‘df)
,

Jf(t,&$%

where the sign I designates the finite ~
according to HAamardfs definition (reference17).

region A

(E6)

—

region A (E7)

of the integral

—— ——. . ——.——— ——.———.
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The factor 1/ ~~; which does not contain z, may be

included in a aoxmnonintegrand, and the finite-part sign may be
removed to the outside of the double integral:

The order of integrationmay now be reversed with the aid of the
scheme for the limits sketched in figare 10:

Evalution of’the finite part of the inner integral @elds the
final result

J

g(f)

JGm ~(g,z)~
P(t,q) = region A

Yc
(E1O)

(~-z)~G

f(g)

Equation (EIO) givep the surface potential in region A that results
from a prescribed distribution of surface potential in region B.

“Equation (E1O) is equivalent to equation (15) of reference 13,
which ap@ies to the mirror image of figure 9. (The ssme equation
was obtatied for a restricted situation in reference 18 (equation (61d)
therein).) Accomling to reference 13, differentiation yields

.

.

—— ———— —-
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region A

(En)

which is equation (17b) therein. This equation constitutes a
genezal solution for the disturbance in region A regardless of
whether the Khtta condition is imposed slong the line ~ = g(~).
It is shown in referenoe 13 that imposition of the Kutta condition
along the line v = g(~) modifies the sidewash distribution v
in such a way as to oause the second integral to vanish. (If the
bum q = g(~) of fig. 9 slopes everywhere toward the left,
instead of tuward the right as shown, v is determined uniquely
by the known u distribution, and the Kutta condition may not
be imposed.)

The Kutta condition version of equation (En) (that is, with
the semnd integral set equal to zero) may be obtained more directly
for ease (b) of figuk 9. In this ease (includingthe special
ease f(~) = O)j u may be written in place of q and */&l

in place of w in equations (El) through (E1O); the result is
given in the new equation (E1O). This approach at first parallels
and then extends that of equation (3) and the fol.lowingequations
in the text.

Solution for w in region B.- It is worthwhile to complete
the solution of the Go@man-Mirels cancellation flow (fig. 9) by
evaluating the upwash velocity w in region B. This l&&ledge-
of w will be useful in determining the @wnwash field in the
general vioinity of the wing - in particular, within a chord length
behind the trailing edge - by means of the cancellation tec~que.
(A line vortex mthml (references19 and 20) yields the downwash
farther back more stifiy,
references 19 and 20) for
the trailing edge.)

.

and simple means are known (cited in
determing the downwash immediately behind

_ . .. ..— .. .... . . . .. —._—, —---- ———- —-—— -—.
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The solution is started ly inverting (solving)the Abel .

integral equation (E2) with the aid of references 6 and 7:

“s

t~ $

a J(g,v1)d~
w=

‘w

G(T1)
v 1-

(E12a)

iJ
c1

M J(hl)d=._
2 ‘g

G(TI1) 1

(E12)

The solution for J has already leen determines,in equation (E4).
Changing z to q therein gives

.

r’
.

1 :,3 .
‘z ‘32 (E13)

Substitution of equati&s (E13a) and (E13) into equations (E12a)
and (E12), respsctivelyj fields

.
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(E14a)

(E14)

By comparison with equation (10) of refe=noe 13, equation
(E14) may be interpreted as the upwash velocity w due to a
given distribution of doublets (or of vortiaity) over a prescribed
area. The area of integration is shown oross-hatched in figure 11
for the same two oonfignations (a) and (b) considered in figure 9.
Note that the regiom A’ andB’ , which lie in the zone that influences
the Toint ~l~~lj are not included. This result implies that for

the point ~l,ql the integral of the doublets in A’ exactly oanoels

the integral of the dou%lets in B’. The situation here with respect
to dmzblets presents an interesting pamllel to Evward’s original
discovery@th respect to suuroes in connection with his membrane
conoept. (See reference 21.)

Equat,ion(E14a) is an alternate form of equation (E14) that
may yield simpler integrations in some cases. Note that the l—

. (finite part) operation is avoided. Similar conside~tions apply
to the alternate forms (E12a) and (E12), (E13a) and (E13).

A partioukrly simple result for &/& can ~e obtained
when the E?whtacondition is imposed. Thus, apply to equation (E14)
a ~ooedure analogcnzsto that by whioh &@x is obtained from
CP in reference 5. The result is

— .- — —-—.—- -—.. ——. — .—.—.. — ..— —————z
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first line integral vanishes because ql. Q along ab,
second line integral may be expressed differently:
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The line integral may be put in more convenient form by means
of an integration%y parts. The final result may be written

p 1

JG,,#df,,,”*
(E16)

The line integral is the same as the one in equation (En). Here
again, then, ~he line integraJ-vanishes if the Kutta oondition Is
imposed along the line ~ = G(q).
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Fi~e 1. - Sweptbaok wing showing basio delta-wing load
distribution along section A-A and approximate cancellation
of this load behind wing by superposition of special flows.
Special flows are plotted with reversed sign. Cross-

hatched areas represent induced changes in loading ahead
of trailing edge.

o

-. .. — .—.

.

.



NACA TN 2147

1v
For angle
of attack

\
/ \

I

Special

Q>.
\

/ ?’\

III III

K
/\ Y

// \
0

\

0
\

0
\

0
\ \ For pitching

/:’+ ///::= +:;.

Iv

F@ure 2. - Flows used for cancellation of lift behind trailing
edge of sweptbaok wing, I, II, III, and IV, and related flows
It, II?, 1111, and IV*.
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Figure 3. - Data for flow If,
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Figure 5. - Superposition of elementary source-sheet
seutors to build up flow I. (Schematic)
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Figure 6. - Comparison of distributionof u velooity
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(proportionalto lift) in right-hand
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Figure 8. - Superposition of elementary source-sheet
sectors to build up flow III. (Schematic. )
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(b) Case (b).

Figure 9. - Data for Goodman+!irels generalized cancellation
flow.
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NACA TN 2147
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Figure 10. - Scheme for interchange of order of integration in
equation (E8)0
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(a) Case (a).
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(b) case (b).

Figure 11. - Area of integrationfor doublets of equation
lE14)e Cases of figure 9.
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